Random survival forest.
Calls ranger::ranger() from package ranger.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():
mlr_learners$get("surv.ranger") lrn("surv.ranger")
Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5--32. ISSN 1573-0565, doi: 10.1023/A:1010933404324 . Wright, N. M, Ziegler, Andreas (2017). “ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R.” Journal of Statistical Software, 77(1), 1--17. doi: 10.18637/jss.v077.i01 .
mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvRanger
new()Creates a new instance of this R6 class.
LearnerSurvRanger$new()
importance()The importance scores are extracted from the model slot variable.importance.
LearnerSurvRanger$importance()
Named numeric().
oob_error()The out-of-bag error is extracted from the model slot prediction.error.
LearnerSurvRanger$oob_error()
clone()The objects of this class are cloneable with this method.
LearnerSurvRanger$clone(deep = FALSE)
deepWhether to make a deep clone.
if (requireNamespace("ranger")) { learner = mlr3::lrn("surv.ranger") print(learner) # available parameters: learner$param_set$ids() }#> <LearnerSurvRanger:surv.ranger> #> * Model: - #> * Parameters: list() #> * Packages: ranger #> * Predict Type: distr #> * Feature types: logical, integer, numeric, character, factor, ordered #> * Properties: importance, oob_error, weights#> [1] "num.trees" "mtry" #> [3] "importance" "write.forest" #> [5] "min.node.size" "replace" #> [7] "sample.fraction" "splitrule" #> [9] "num.random.splits" "max.depth" #> [11] "alpha" "minprop" #> [13] "regularization.factor" "regularization.usedepth" #> [15] "seed" "split.select.weights" #> [17] "always.split.variables" "respect.unordered.factors" #> [19] "scale.permutation.importance" "keep.inbag" #> [21] "holdout" "num.threads" #> [23] "save.memory" "verbose" #> [25] "oob.error"