Skip to contents

Generalized linear models with elastic net regularization. Calls glmnet::cv.glmnet() from package glmnet.

The default for hyperparameter family is set to "binomial" or "multinomial", depending on the number of classes.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("classif.cv_glmnet")
lrn("classif.cv_glmnet")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3learners, glmnet

Parameters

IdTypeDefaultLevelsRange
alignmentcharacterlambdalambda, fraction-
alphanumeric1\([0, 1]\)
bignumeric9.9e+35\((-\infty, \infty)\)
devmaxnumeric0.999\([0, 1]\)
dfmaxinteger-\([0, \infty)\)
epsnrnumeric1e-08\([0, 1]\)
epsnumeric1e-06\([0, 1]\)
excludeinteger-\([1, \infty)\)
exmxnumeric250\((-\infty, \infty)\)
fdevnumeric1e-05\([0, 1]\)
foldiduntypedNULL-
gammauntyped--
groupedlogicalTRUETRUE, FALSE-
interceptlogicalTRUETRUE, FALSE-
keeplogicalFALSETRUE, FALSE-
lambda.min.rationumeric-\([0, 1]\)
lambdauntyped--
lower.limitsuntyped--
maxitinteger100000\([1, \infty)\)
mnlaminteger5\([1, \infty)\)
mxitnrinteger25\([1, \infty)\)
mxitinteger100\([1, \infty)\)
nfoldsinteger10\([3, \infty)\)
nlambdainteger100\([1, \infty)\)
offsetuntypedNULL-
parallellogicalFALSETRUE, FALSE-
penalty.factoruntyped--
pmaxinteger-\([0, \infty)\)
pminnumeric1e-09\([0, 1]\)
precnumeric1e-10\((-\infty, \infty)\)
predict.gammanumericgamma.1se\((-\infty, \infty)\)
relaxlogicalFALSETRUE, FALSE-
snumericlambda.1se\([0, \infty)\)
standardizelogicalTRUETRUE, FALSE-
standardize.responselogicalFALSETRUE, FALSE-
threshnumeric1e-07\([0, \infty)\)
trace.itinteger0\([0, 1]\)
type.gaussiancharacter-covariance, naive-
type.logisticcharacter-Newton, modified.Newton-
type.measurecharacterdeviancedeviance, class, auc, mse, mae-
type.multinomialcharacter-ungrouped, grouped-
upper.limitsuntyped--

Internal Encoding

Starting with mlr3 v0.5.0, the order of class labels is reversed prior to model fitting to comply to the stats::glm() convention that the negative class is provided as the first factor level.

References

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1--22. doi:10.18637/jss.v033.i01 .

See also

Other Learner: mlr_learners_classif.glmnet, mlr_learners_classif.kknn, mlr_learners_classif.lda, mlr_learners_classif.log_reg, mlr_learners_classif.multinom, mlr_learners_classif.naive_bayes, mlr_learners_classif.nnet, mlr_learners_classif.qda, mlr_learners_classif.ranger, mlr_learners_classif.svm, mlr_learners_classif.xgboost, mlr_learners_regr.cv_glmnet, mlr_learners_regr.glmnet, mlr_learners_regr.kknn, mlr_learners_regr.km, mlr_learners_regr.lm, mlr_learners_regr.nnet, mlr_learners_regr.ranger, mlr_learners_regr.svm, mlr_learners_regr.xgboost

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifCVGlmnet

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method selected_features()

Returns the set of selected features as reported by glmnet::predict.glmnet() with type set to "nonzero".

Usage

LearnerClassifCVGlmnet$selected_features(lambda = NULL)

Arguments

lambda

(numeric(1))
Custom lambda, defaults to the active lambda depending on parameter set.

Returns

(character()) of feature names.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifCVGlmnet$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (requireNamespace("glmnet", quietly = TRUE)) {
# Define the Learner and set parameter values
learner = lrn("classif.cv_glmnet")
print(learner)

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

# print the model
print(learner$model)

# importance method
if("importance" %in% learner$properties) print(learner$importance)

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
}
#> <LearnerClassifCVGlmnet:classif.cv_glmnet>: GLM with Elastic Net Regularization
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3learners, glmnet
#> * Predict Types:  [response], prob
#> * Feature Types: logical, integer, numeric
#> * Properties: multiclass, selected_features, twoclass, weights
#> 
#> Call:  (if (cv) glmnet::cv.glmnet else glmnet::glmnet)(x = data, y = target,      family = "binomial") 
#> 
#> Measure: Binomial Deviance 
#> 
#>      Lambda Index Measure      SE Nonzero
#> min 0.01902    27   1.024 0.10118      24
#> 1se 0.05292    16   1.118 0.05831      13
#> classif.ce 
#>  0.2318841