R/LearnerRegrCVGlmnet.R
mlr_learners_regr.cv_glmnet.RdGeneralized linear models with elastic net regularization.
Calls glmnet::cv.glmnet() from package glmnet.
The default for hyperparameter family is changed to "gaussian".
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():
mlr_learners$get("regr.cv_glmnet") lrn("regr.cv_glmnet")
Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1--22. doi: 10.18637/jss.v033.i01 .
mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrCVGlmnet
new()Creates a new instance of this R6 class.
LearnerRegrCVGlmnet$new()
clone()The objects of this class are cloneable with this method.
LearnerRegrCVGlmnet$clone(deep = FALSE)
deepWhether to make a deep clone.
if (requireNamespace("glmnet")) { learner = mlr3::lrn("regr.cv_glmnet") print(learner) # available parameters: learner$param_set$ids() }#> <LearnerRegrCVGlmnet:regr.cv_glmnet> #> * Model: - #> * Parameters: family=gaussian #> * Packages: glmnet #> * Predict Type: response #> * Feature types: logical, integer, numeric #> * Properties: weights#> [1] "family" "offset" "alpha" "nfolds" #> [5] "type.measure" "s" "lambda.min.ratio" "lambda" #> [9] "standardize" "intercept" "thresh" "dfmax" #> [13] "pmax" "exclude" "penalty.factor" "lower.limits" #> [17] "upper.limits" "maxit" "type.gaussian" "type.logistic" #> [21] "type.multinomial" "keep" "parallel" "trace.it" #> [25] "foldid" "alignment" "grouped" "gamma" #> [29] "relax" "fdev" "devmax" "eps" #> [33] "epsnr" "big" "mnlam" "pmin" #> [37] "exmx" "prec" "mxit" "mxitnr" #> [41] "newoffset" "predict.gamma"