Skip to contents

Quadratic discriminant analysis. Calls MASS::qda() from package MASS.

Details

Parameters method and prior exist for training and prediction but accept different values for each. Therefore, arguments for the predict stage have been renamed to predict.method and predict.prior, respectively.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("classif.qda")
lrn("classif.qda")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3learners, MASS

Parameters

IdTypeDefaultLevelsRange
methodcharactermomentmoment, mle, mve, t-
nuinteger-\((-\infty, \infty)\)
predict.methodcharacterplug-inplug-in, predictive, debiased-
predict.prioruntyped--
prioruntyped--

References

Venables WN, Ripley BD (2002). Modern Applied Statistics with S, Fourth edition. Springer, New York. ISBN 0-387-95457-0, http://www.stats.ox.ac.uk/pub/MASS4/.

See also

Other Learner: mlr_learners_classif.cv_glmnet, mlr_learners_classif.glmnet, mlr_learners_classif.kknn, mlr_learners_classif.lda, mlr_learners_classif.log_reg, mlr_learners_classif.multinom, mlr_learners_classif.naive_bayes, mlr_learners_classif.nnet, mlr_learners_classif.ranger, mlr_learners_classif.svm, mlr_learners_classif.xgboost, mlr_learners_regr.cv_glmnet, mlr_learners_regr.glmnet, mlr_learners_regr.kknn, mlr_learners_regr.km, mlr_learners_regr.lm, mlr_learners_regr.nnet, mlr_learners_regr.ranger, mlr_learners_regr.svm, mlr_learners_regr.xgboost

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifQDA

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifQDA$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (requireNamespace("MASS", quietly = TRUE)) {
  learner = mlr3::lrn("classif.qda")
  print(learner)

  # available parameters:
learner$param_set$ids()
}
#> <LearnerClassifQDA:classif.qda>
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3learners, MASS
#> * Predict Types:  [response], prob
#> * Feature Types: logical, integer, numeric, factor, ordered
#> * Properties: multiclass, twoclass, weights
#> [1] "method"         "nu"             "predict.method" "predict.prior" 
#> [5] "prior"