Skip to contents

eXtreme Gradient Boosting regression. Calls xgboost::xgb.train() from package xgboost.

To compute on GPUs, you first need to compile xgboost yourself and link against CUDA. See https://xgboost.readthedocs.io/en/stable/build.html#building-with-gpu-support.

Note

To compute on GPUs, you first need to compile xgboost yourself and link against CUDA. See https://xgboost.readthedocs.io/en/stable/build.html#building-with-gpu-support.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("regr.xgboost")
lrn("regr.xgboost")

Meta Information

, * Task type: “regr”, * Predict Types: “response”, * Feature Types: “logical”, “integer”, “numeric”, * Required Packages: mlr3, mlr3learners, xgboost

Parameters

, |Id |Type |Default |Levels |Range |, |:---------------------------|:---------|:----------------|:----------------------------------------|:------------------------------------|, |alpha |numeric |0 | |\([0, \infty)\) |, |approxcontrib |logical |FALSE |TRUE, FALSE |- |, |base_score |numeric |0.5 | |\((-\infty, \infty)\) |, |booster |character |gbtree |gbtree, gblinear, dart |- |, |callbacks |untyped |list | |- |, |colsample_bylevel |numeric |1 | |\([0, 1]\) |, |colsample_bynode |numeric |1 | |\([0, 1]\) |, |colsample_bytree |numeric |1 | |\([0, 1]\) |, |disable_default_eval_metric |logical |FALSE |TRUE, FALSE |- |, |early_stopping_rounds |integer |NULL | |\([1, \infty)\) |, |eta |numeric |0.3 | |\([0, 1]\) |, |eval_metric |untyped |rmse | |- |, |feature_selector |character |cyclic |cyclic, shuffle, random, greedy, thrifty |- |, |feval |untyped | | |- |, |gamma |numeric |0 | |\([0, \infty)\) |, |grow_policy |character |depthwise |depthwise, lossguide |- |, |interaction_constraints |untyped |- | |- |, |iterationrange |untyped |- | |- |, |lambda |numeric |1 | |\([0, \infty)\) |, |lambda_bias |numeric |0 | |\([0, \infty)\) |, |max_bin |integer |256 | |\([2, \infty)\) |, |max_delta_step |numeric |0 | |\([0, \infty)\) |, |max_depth |integer |6 | |\([0, \infty)\) |, |max_leaves |integer |0 | |\([0, \infty)\) |, |maximize |logical |NULL |TRUE, FALSE |- |, |min_child_weight |numeric |1 | |\([0, \infty)\) |, |missing |numeric |NA | |\((-\infty, \infty)\) |, |monotone_constraints |untyped |0 | |- |, |normalize_type |character |tree |tree, forest |- |, |nrounds |integer |- | |\([1, \infty)\) |, |nthread |integer |1 | |\([1, \infty)\) |, |ntreelimit |integer |NULL | |\([1, \infty)\) |, |num_parallel_tree |integer |1 | |\([1, \infty)\) |, |objective |untyped |reg:squarederror | |- |, |one_drop |logical |FALSE |TRUE, FALSE |- |, |outputmargin |logical |FALSE |TRUE, FALSE |- |, |predcontrib |logical |FALSE |TRUE, FALSE |- |, |predictor |character |cpu_predictor |cpu_predictor, gpu_predictor |- |, |predinteraction |logical |FALSE |TRUE, FALSE |- |, |predleaf |logical |FALSE |TRUE, FALSE |- |, |print_every_n |integer |1 | |\([1, \infty)\) |, |process_type |character |default |default, update |- |, |rate_drop |numeric |0 | |\([0, 1]\) |, |refresh_leaf |logical |TRUE |TRUE, FALSE |- |, |reshape |logical |FALSE |TRUE, FALSE |- |, |sampling_method |character |uniform |uniform, gradient_based |- |, |sample_type |character |uniform |uniform, weighted |- |, |save_name |untyped | | |- |, |save_period |integer |NULL | |\([0, \infty)\) |, |scale_pos_weight |numeric |1 | |\((-\infty, \infty)\) |, |seed_per_iteration |logical |FALSE |TRUE, FALSE |- |, |sketch_eps |numeric |0.03 | |\([0, 1]\) |, |skip_drop |numeric |0 | |\([0, 1]\) |, |strict_shape |logical |FALSE |TRUE, FALSE |- |, |subsample |numeric |1 | |\([0, 1]\) |, |top_k |integer |0 | |\([0, \infty)\) |, |training |logical |FALSE |TRUE, FALSE |- |, |tree_method |character |auto |auto, exact, approx, hist, gpu_hist |- |, |tweedie_variance_power |numeric |1.5 | |\([1, 2]\) |, |updater |untyped |- | |- |, |verbose |integer |1 | |\([0, 2]\) |, |watchlist |untyped | | |- |, |xgb_model |untyped | | |- |

Custom mlr3 defaults

  • nrounds:

    • Actual default: no default.

    • Adjusted default: 1.

    • Reason for change: Without a default construction of the learner would error. Just setting a nonsense default to workaround this. nrounds needs to be tuned by the user.

  • nthread:

    • Actual value: Undefined, triggering auto-detection of the number of CPUs.

    • Adjusted value: 1.

    • Reason for change: Conflicting with parallelization via future.

  • verbose:

    • Actual default: 1.

    • Adjusted default: 0.

    • Reason for change: Reduce verbosity.

References

Chen, Tianqi, Guestrin, Carlos (2016). “Xgboost: A scalable tree boosting system.” In Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 785--794. ACM. doi:10.1145/2939672.2939785 .

See also

Other Learner: mlr_learners_classif.cv_glmnet, mlr_learners_classif.glmnet, mlr_learners_classif.kknn, mlr_learners_classif.lda, mlr_learners_classif.log_reg, mlr_learners_classif.multinom, mlr_learners_classif.naive_bayes, mlr_learners_classif.nnet, mlr_learners_classif.qda, mlr_learners_classif.ranger, mlr_learners_classif.svm, mlr_learners_classif.xgboost, mlr_learners_regr.cv_glmnet, mlr_learners_regr.glmnet, mlr_learners_regr.kknn, mlr_learners_regr.km, mlr_learners_regr.lm, mlr_learners_regr.ranger, mlr_learners_regr.svm

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrXgboost

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method importance()

The importance scores are calculated with xgboost::xgb.importance().

Usage

LearnerRegrXgboost$importance()

Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrXgboost$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (requireNamespace("xgboost", quietly = TRUE)) {
  learner = mlr3::lrn("regr.xgboost")
  print(learner)

  # available parameters:
learner$param_set$ids()
}
#> <LearnerRegrXgboost:regr.xgboost>
#> * Model: -
#> * Parameters: nrounds=1, nthread=1, verbose=0
#> * Packages: mlr3, mlr3learners, xgboost
#> * Predict Type: response
#> * Feature types: logical, integer, numeric
#> * Properties: hotstart_forward, importance, missings, weights
#>  [1] "alpha"                       "approxcontrib"              
#>  [3] "base_score"                  "booster"                    
#>  [5] "callbacks"                   "colsample_bylevel"          
#>  [7] "colsample_bynode"            "colsample_bytree"           
#>  [9] "disable_default_eval_metric" "early_stopping_rounds"      
#> [11] "eta"                         "eval_metric"                
#> [13] "feature_selector"            "feval"                      
#> [15] "gamma"                       "grow_policy"                
#> [17] "interaction_constraints"     "iterationrange"             
#> [19] "lambda"                      "lambda_bias"                
#> [21] "max_bin"                     "max_delta_step"             
#> [23] "max_depth"                   "max_leaves"                 
#> [25] "maximize"                    "min_child_weight"           
#> [27] "missing"                     "monotone_constraints"       
#> [29] "normalize_type"              "nrounds"                    
#> [31] "nthread"                     "ntreelimit"                 
#> [33] "num_parallel_tree"           "objective"                  
#> [35] "one_drop"                    "outputmargin"               
#> [37] "predcontrib"                 "predictor"                  
#> [39] "predinteraction"             "predleaf"                   
#> [41] "print_every_n"               "process_type"               
#> [43] "rate_drop"                   "refresh_leaf"               
#> [45] "reshape"                     "sampling_method"            
#> [47] "sample_type"                 "save_name"                  
#> [49] "save_period"                 "scale_pos_weight"           
#> [51] "seed_per_iteration"          "sketch_eps"                 
#> [53] "skip_drop"                   "strict_shape"               
#> [55] "subsample"                   "top_k"                      
#> [57] "training"                    "tree_method"                
#> [59] "tweedie_variance_power"      "updater"                    
#> [61] "verbose"                     "watchlist"                  
#> [63] "xgb_model"