Extreme Gradient Boosting Regression Learner
Source:R/LearnerRegrXgboost.R
mlr_learners_regr.xgboost.Rd
eXtreme Gradient Boosting regression.
Calls xgboost::xgb.train()
from package xgboost.
To compute on GPUs, you first need to compile xgboost yourself and link against CUDA. See https://xgboost.readthedocs.io/en/stable/build.html#building-with-gpu-support.
Note that using the watchlist
parameter directly will lead to problems when wrapping this mlr3::Learner in a
mlr3pipelines
GraphLearner
as the preprocessing steps will not be applied to the data in the watchlist.
See the section Early Stopping and Validation on how to do this.
Note
To compute on GPUs, you first need to compile xgboost yourself and link against CUDA. See https://xgboost.readthedocs.io/en/stable/build.html#building-with-gpu-support.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn()
:
Meta Information
Task type: “regr”
Predict Types: “response”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3learners, xgboost
Parameters
Id | Type | Default | Levels | Range |
alpha | numeric | 0 | \([0, \infty)\) | |
approxcontrib | logical | FALSE | TRUE, FALSE | - |
base_score | numeric | 0.5 | \((-\infty, \infty)\) | |
booster | character | gbtree | gbtree, gblinear, dart | - |
callbacks | untyped | list() | - | |
colsample_bylevel | numeric | 1 | \([0, 1]\) | |
colsample_bynode | numeric | 1 | \([0, 1]\) | |
colsample_bytree | numeric | 1 | \([0, 1]\) | |
device | untyped | "cpu" | - | |
disable_default_eval_metric | logical | FALSE | TRUE, FALSE | - |
early_stopping_rounds | integer | NULL | \([1, \infty)\) | |
eta | numeric | 0.3 | \([0, 1]\) | |
eval_metric | untyped | "rmse" | - | |
feature_selector | character | cyclic | cyclic, shuffle, random, greedy, thrifty | - |
feval | untyped | NULL | - | |
gamma | numeric | 0 | \([0, \infty)\) | |
grow_policy | character | depthwise | depthwise, lossguide | - |
interaction_constraints | untyped | - | - | |
iterationrange | untyped | - | - | |
lambda | numeric | 1 | \([0, \infty)\) | |
lambda_bias | numeric | 0 | \([0, \infty)\) | |
max_bin | integer | 256 | \([2, \infty)\) | |
max_delta_step | numeric | 0 | \([0, \infty)\) | |
max_depth | integer | 6 | \([0, \infty)\) | |
max_leaves | integer | 0 | \([0, \infty)\) | |
maximize | logical | NULL | TRUE, FALSE | - |
min_child_weight | numeric | 1 | \([0, \infty)\) | |
missing | numeric | NA | \((-\infty, \infty)\) | |
monotone_constraints | untyped | 0 | - | |
normalize_type | character | tree | tree, forest | - |
nrounds | integer | - | \([1, \infty)\) | |
nthread | integer | 1 | \([1, \infty)\) | |
ntreelimit | integer | NULL | \([1, \infty)\) | |
num_parallel_tree | integer | 1 | \([1, \infty)\) | |
objective | untyped | "reg:squarederror" | - | |
one_drop | logical | FALSE | TRUE, FALSE | - |
outputmargin | logical | FALSE | TRUE, FALSE | - |
predcontrib | logical | FALSE | TRUE, FALSE | - |
predinteraction | logical | FALSE | TRUE, FALSE | - |
predleaf | logical | FALSE | TRUE, FALSE | - |
print_every_n | integer | 1 | \([1, \infty)\) | |
process_type | character | default | default, update | - |
rate_drop | numeric | 0 | \([0, 1]\) | |
refresh_leaf | logical | TRUE | TRUE, FALSE | - |
reshape | logical | FALSE | TRUE, FALSE | - |
sampling_method | character | uniform | uniform, gradient_based | - |
sample_type | character | uniform | uniform, weighted | - |
save_name | untyped | NULL | - | |
save_period | integer | NULL | \([0, \infty)\) | |
scale_pos_weight | numeric | 1 | \((-\infty, \infty)\) | |
seed_per_iteration | logical | FALSE | TRUE, FALSE | - |
skip_drop | numeric | 0 | \([0, 1]\) | |
strict_shape | logical | FALSE | TRUE, FALSE | - |
subsample | numeric | 1 | \([0, 1]\) | |
top_k | integer | 0 | \([0, \infty)\) | |
training | logical | FALSE | TRUE, FALSE | - |
tree_method | character | auto | auto, exact, approx, hist, gpu_hist | - |
tweedie_variance_power | numeric | 1.5 | \([1, 2]\) | |
updater | untyped | - | - | |
verbose | integer | 1 | \([0, 2]\) | |
watchlist | untyped | NULL | - | |
xgb_model | untyped | NULL | - |
Early Stopping and Validation
In order to monitor the validation performance during the training, you can set the $validate
field of the Learner.
For information on how to configure the valdiation set, see the Validation section of mlr3::Learner
.
This validation data can also be used for early stopping, which can be enabled by setting the early_stopping_rounds
parameter.
The final (or in the case of early stopping best) validation scores can be accessed via $internal_valid_scores
, and the
optimal nrounds
via $internal_tuned_values
.
Initial parameter values
nrounds
:Actual default: no default.
Adjusted default: 1.
Reason for change: Without a default construction of the learner would error. Just setting a nonsense default to workaround this.
nrounds
needs to be tuned by the user.
nthread
:Actual value: Undefined, triggering auto-detection of the number of CPUs.
Adjusted value: 1.
Reason for change: Conflicting with parallelization via future.
verbose
:Actual default: 1.
Adjusted default: 0.
Reason for change: Reduce verbosity.
References
Chen, Tianqi, Guestrin, Carlos (2016). “Xgboost: A scalable tree boosting system.” In Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 785--794. ACM. doi:10.1145/2939672.2939785 .
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
mlr_learners_classif.cv_glmnet
,
mlr_learners_classif.glmnet
,
mlr_learners_classif.kknn
,
mlr_learners_classif.lda
,
mlr_learners_classif.log_reg
,
mlr_learners_classif.multinom
,
mlr_learners_classif.naive_bayes
,
mlr_learners_classif.nnet
,
mlr_learners_classif.qda
,
mlr_learners_classif.ranger
,
mlr_learners_classif.svm
,
mlr_learners_classif.xgboost
,
mlr_learners_regr.cv_glmnet
,
mlr_learners_regr.glmnet
,
mlr_learners_regr.kknn
,
mlr_learners_regr.km
,
mlr_learners_regr.lm
,
mlr_learners_regr.nnet
,
mlr_learners_regr.ranger
,
mlr_learners_regr.svm
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrXgboost
Active bindings
internal_valid_scores
(named
list()
orNULL
) The validation scores extracted frommodel$evaluation_log
. If early stopping is activated, this contains the validation scores of the model for the optimalnrounds
, otherwise thenrounds
for the final model.internal_tuned_values
(named
list()
orNULL
) If early stopping is activated, this returns a list withnrounds
, which is extracted from$best_iteration
of the model and otherwiseNULL
.validate
(
numeric(1)
orcharacter(1)
orNULL
) How to construct the internal validation data. This parameter can be eitherNULL
, a ratio,"test"
, or"predefined"
. Returns the$best_iteration
when early stopping is activated.
Methods
Method importance()
The importance scores are calculated with xgboost::xgb.importance()
.
Returns
Named numeric()
.
Examples
if (FALSE) {
if (requireNamespace("xgboost", quietly = TRUE)) {
# Define the Learner and set parameter values
learner = lrn("regr.xgboost")
print(learner)
# Define a Task
task = tsk("mtcars")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# print the model
print(learner$model)
# importance method
if("importance" %in% learner$properties) print(learner$importance)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
}
}
if (FALSE) {
# Train learner with early stopping on spam data set
task = tsk("mtcars")
# use 30 percent for validation
# Set early stopping parameter
learner = lrn("regr.xgboost",
nrounds = 100,
early_stopping_rounds = 10,
validate = 0.3
)
# Train learner with early stopping
learner$train(task)
# Inspect optimal nrounds and validation performance
learner$internal_tuned_values
learner$internal_valid_scores
}