Skip to contents

Ordinary linear regression. Calls stats::lm().

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("regr.lm")
lrn("regr.lm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”, “se”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”

  • Required Packages: mlr3, mlr3learners, 'stats'

Parameters

IdTypeDefaultLevelsRange
dfnumericInf\((-\infty, \infty)\)
intervalcharacter-none, confidence, prediction-
levelnumeric0.95\((-\infty, \infty)\)
modellogicalTRUETRUE, FALSE-
offsetlogical-TRUE, FALSE-
pred.varuntyped--
qrlogicalTRUETRUE, FALSE-
scalenumericNULL\((-\infty, \infty)\)
singular.oklogicalTRUETRUE, FALSE-
xlogicalFALSETRUE, FALSE-
ylogicalFALSETRUE, FALSE-

Contrasts

To ensure reproducibility, this learner always uses the default contrasts:

Setting the option "contrasts" does not have any effect. Instead, set the respective hyperparameter or use mlr3pipelines to create dummy features.

See also

Other Learner: mlr_learners_classif.cv_glmnet, mlr_learners_classif.glmnet, mlr_learners_classif.kknn, mlr_learners_classif.lda, mlr_learners_classif.log_reg, mlr_learners_classif.multinom, mlr_learners_classif.naive_bayes, mlr_learners_classif.nnet, mlr_learners_classif.qda, mlr_learners_classif.ranger, mlr_learners_classif.svm, mlr_learners_classif.xgboost, mlr_learners_regr.cv_glmnet, mlr_learners_regr.glmnet, mlr_learners_regr.kknn, mlr_learners_regr.km, mlr_learners_regr.nnet, mlr_learners_regr.ranger, mlr_learners_regr.svm, mlr_learners_regr.xgboost

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrLM

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method loglik()

Extract the log-likelihood (e.g., via stats::logLik() from the fitted model.

Usage

LearnerRegrLM$loglik()


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrLM$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

if (requireNamespace("stats", quietly = TRUE)) {
  learner = mlr3::lrn("regr.lm")
  print(learner)

  # available parameters:
learner$param_set$ids()
}
#> <LearnerRegrLM:regr.lm>: Linear Model
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, mlr3learners, stats
#> * Predict Types:  [response], se
#> * Feature Types: logical, integer, numeric, character, factor
#> * Properties: loglik, weights
#>  [1] "df"            "interval"      "level"         "model"        
#>  [5] "offset"        "pred.var"      "qr"            "scale"        
#>  [9] "singular.ok"   "x"             "y"             "rankdeficient"
#> [13] "tol"           "verbose"